If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+150t+20=0
a = -16; b = 150; c = +20;
Δ = b2-4ac
Δ = 1502-4·(-16)·20
Δ = 23780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23780}=\sqrt{4*5945}=\sqrt{4}*\sqrt{5945}=2\sqrt{5945}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{5945}}{2*-16}=\frac{-150-2\sqrt{5945}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{5945}}{2*-16}=\frac{-150+2\sqrt{5945}}{-32} $
| 9(9v+7)=-12+6v | | 7x+3=3+7x* | | 6(4a+4)=6(4-4a) | | -2x-33=-75 | | 5.7x+8.3=31.1 | | 13-4x=1=x | | 5+x2=500 | | -3n+6=6(1+9n) | | 6(x-3+10=2(3x-4) | | 4(-4m+2)=4m-4(6-3m) | | -30-n=10(-3+6n)+5n | | 2(7x+1)+5(2-x)=x+6x | | 36=1+7aa | | 3(x+2)=-2(7x-1)+x | | 5y^2-20y+17=0 | | 4(y-8)-2y=-20 | | 2x+5x-8=0 | | 3+2m=1.50+2.50m | | 4v-6(8v+5)=2v+6(v-5) | | x^2+4x-1000000000=0 | | -8v+5(v+2)=19 | | x^2-0.35x-46200=0 | | 290=5d-55 | | x6=25x= | | 19=-7w+5(w+3) | | 1/5x+4/15=0 | | 5(90-7x)=x=126 | | 5(5+8x)=-5(-5x+7) | | 5h+10=50 | | 10=5(x-4)+5x | | 0.2(8x+64)=1.6(x+8) | | 2.2=c/68 |